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Abstract. We have calculated the next-to-leading order cross section for the inclusive production of charm
quarks as a function of the transverse momentum pT and the rapidity in two approaches using massive or
massless charm quarks. For the single-resolved cross section we have derived the massless limit from the
massive theory. We find that this limit differs from the genuine massless version with MS factorization by
finite corrections. By adjusting subtraction terms we establish a massive theory with MS subtraction which
approaches the massless theory very fast with increasing transverse momentum. With these results and
including the equivalent results for the direct cross section obtained previously as well as double-resolved
contributions, we calculate the inclusive D∗± cross section in γγ collisions using realistic evolved non-
perturbative fragmentation functions and compare with recent data from the LEP collaborations ALEPH,
L3 and OPAL. We find good agreement.

1 Introduction

Recently there has been quite some interest in the study
of charm production in two-photon collisions at high en-
ergy e+e− colliders, both experimentally and theoretically.
The three LEP collaborations ALEPH, L3 and OPAL have
presented cross section data for inclusive D∗ production
in two-photon collisions at e+e− center-of-mass energies
close to

√
s = 189 GeV [1–3]. Besides the total cross sec-

tion for γ + γ → D∗ + X, also differential cross sections
with respect to the D∗ transverse momentum, dσ/dpT,
and the pseudo-rapidity, dσ/dη, have been measured.

On the theoretical side two distinct approaches for
next-to-leading order (NLO) calculations in perturbative
QCD have been used for comparison with the experimen-
tal data. In the so-called massless scheme (ZM scheme)
[4], which is the conventional parton model approach, the
zero-mass parton approximation is applied also to the
charm quark, although its mass m is certainly much larger
than ΛQCD. In this approach the charm quark is also an
ingoing parton originating from the photon, leading to
additional single- and double-resolved contributions (be-
sides those from u, d and s quarks and the gluon g). The
charm quark fragments into the D∗ meson similarly as the
light quarks and the gluon with a fragmentation function
(FF) known from other processes. The well-known fac-
torization theorem then provides a straightforward pro-
cedure for order-by-order perturbative calculations. Al-
though this approach can be used as soon as the factoriza-
tion scales of initial and final state are above the starting
scale of the parton distribution function (PDF) of the pho-

ton and of the FF of the D∗, the predictions are reliable
only in the region of large transverse momenta pT � m,
where terms of the order of m2/p2

T can safely be neglected.
The other calculational scheme which has been applied

to the process γ+γ → D∗+X in [5] is the so-called massive
scheme, also called fixed flavor-number scheme (FFN), in
which the number of active flavors in the initial state for
the resolved contributions is limited to nf = 3 and the
charm quark appears only in the final state of the direct,
single-resolved and double-resolved contributions. In this
case, the c quark is always treated as a heavy particle and
never as a parton. The actual mass parameter m is explic-
itly taken into account along with pT as if they were of the
same order, irrespective of their real relative magnitudes.
In this scheme the charm mass acts as a cutoff for the
initial- and final-state collinear singularities and sets the
scale for the perturbative calculations. However, in NLO,
terms ∝ αs ln(p2

T/m2) arise from collinear emissions of a
gluon by the charmed quark at large transverse momenta
or from almost collinear branchings of photons or gluons
into cc pairs. These terms are of order O(1) for large pT
and with the choice µR ∼ pT for the renormalization scale
they spoil the convergence of the perturbation series. The
FFN approach with nf = 3 should thus be limited to a
rather small range of pT ∼ m. Nevertheless, predictions in
this approach have been compared to experimental data
up to pT = 12 GeV [1, 2].

As has been explained at many places in the literature,
mostly in the context of charm production in deep inelastic
ep scattering (for a very recent review see [6]), the correct
approach for pT � m is to absorb the potentially large
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logarithms into the charm PDF of the photon and the FF
of the c into D∗. Then, large logarithms ∝ ln(M2/m2)
defined with the factorization scale M determine the evo-
lution to higher scales and can be resummed by virtue
of the Altarelli–Parisi equations. The unsubtracted terms
∝ ln(p2

T/M2) are of order O(1) for the appropriate choice
M of order pT. After factorizing the lnm2 terms, the hard
cross section is infrared safe and nf = 4 is taken in the evo-
lution equations and the equation for αs. The remaining
dependence on m, i.e. the terms proportional to m2/p2

T,
can be kept in the hard cross section to achieve better
accuracy in the intermediate region pT � m. The factor-
ization of mass divergent terms can be extended consis-
tently to higher orders in αs, as has been shown by Collins
in the context of heavy quark production in high-Q2 ep
collisions [7].

Now it is well known that the subtraction of just the
collinearly, i.e. mass, singular terms does not define a
unique factorization prescription. Also finite terms must
be specified. In the conventional ZM calculations the mass
m is put to zero from the beginning and the collinearly
divergent terms are defined with the help of dimensional
regularization. This fixes the finite terms in a specific way
and their form is inherent to the chosen regularization pro-
cedure. If one starts with m �= 0 and performs the limit
m → 0 afterwards, the finite terms can be different. These
terms have to be removed by subtraction together with
the lnm2 terms in such a way that in the limit pT → ∞
the known massless MS expressions are recovered. This re-
quirement is actually unavoidable since all existing PDFs
and FFs, including those for heavy quarks, are defined in
this particular scheme (or sometimes in the DIS scheme
which can be derived from the MS scheme). It is clear
that a subtraction scheme defined in this way is a correct
extension of the conventional zero-mass scheme to include
charm mass effects in a consistent way.

In a recent work we applied this finite charm mass
scheme with MS subtraction to the calculation of the cross
section for γ + γ → D∗ + X [8]. As a first step we con-
sidered only the direct cross section with m �= 0. In the
calculation of the full cross section needed for compar-
ison with experimental data, i.e. in the sum of the di-
rect, single-resolved and double-resolved parts, the latter
two contributions were still treated in the ZM four-flavor
scheme. It is the purpose of this work to extend the fi-
nite charm mass calculation to the single-resolved cross
section. This cross section plays an important part due to
the partonic subprocess γ + g → c + c with charm quarks
in the final state and due to the process γ + q → c+ c+ q,
where q is one of the light (massless) quarks q = u, d,
s. These contributions and their NLO corrections should
be computed with massive charm quarks in the same way
as the direct cross section due to the partonic subpro-
cess γ + γ → c + c and its higher order corrections. The
double-resolved part with charm quarks in the final state
originating from q + q → c + c and g + g → c + c and the
corresponding NLO corrections will still be considered in
the ZM four-flavor approach since it contributes very little
to the complete double-resolved cross section [5, 8, 9].

Starting with γ + g → c + c, the NLO corrections
for the single-resolved cross section can be split into an
Abelian and a non-Abelian part. The Abelian part is, up
to a constant factor, identical to the NLO corrections to
γ +γ → c+ c. For this part, the terms in the massive the-
ory surviving in the limit m → 0, which are not present in
the ZM approach, have been identified in our earlier work
[8]. Therefore, only the non-Abelian part of the NLO cor-
rections to the photon–gluon fusion cross section and the
cross section for γ + q → c+ c+ q have to be investigated.
The single-inclusive charm cross section with m �= 0 has
been calculated recently by Merebashvili et al. [10]. We
can use these results to derive the limit m → 0 and es-
tablish the subtraction terms by comparing to the MS
factorized cross section derived in [11], in the same way as
we did in [8] for the Abelian part. With this knowledge we
can compute the finite mass corrections for the full NLO
single-resolved cross section with MS factorization.

The outline of our work is as follows. In Sect. 2 we
describe the formulae which we use to calculate the non-
Abelian part of the cross section for γ + g → c(c) + X
and for γ + q → c(c)+X with non-zero charm mass using
the results of [10]. From these cross sections we derive the
limit m → 0 and compare with the ZM theory of [11].
The results are reported in Sect. 3, where also numeri-
cal tests for checking the subtraction terms are presented.
Here we show how the various terms in the NLO cross
section approach their corresponding massless limits for
large pT. After adding the already known Abelian part
and the direct contribution with MS subtraction, as well
as the double-resolved contribution, we compare our re-
sults to recent experimental data from LEPII in Sect. 4.
A summary and conclusions are given in Sect. 5.

2 Calculation of the LO
and NLO differential cross section

The single-resolved contribution to the process γ + γ →
D∗+X has many pieces. In this section we concentrate on
those contributions where the charm quark appears only in
the final state. We study the mass dependence in order to
obtain the massless limit which is then compared with the
genuine massless theory. There is only one leading-order
parton process γ + g → c + c̄ with the initial gluon origi-
nating from the resolved photon. The NLO corrections to
γ + g → c + c̄ are the virtual corrections and the gluonic
bremsstrahlung contributions γ+g → c+c̄+g. In addition,
the subprocesses γ + q → c + c̄ + q and γ + q̄ → c + c̄ + q̄,
where q denotes a light quark, must be taken into account
in NLO. The NLO correction to γ + g → c + c̄ has an
Abelian and a non-Abelian part. The Abelian part is up
to a trivial factor identical to the NLO corrections for
the process γ + γ → c + c̄, which has been considered in
our previous work [8]. So, we need to calculate only the
non-Abelian contribution. In the following subsection we
present the LO cross section in order to fix the notation.
Then we proceed to the calculation of the NLO correc-
tions to the non-Abelian part and of the cross section for
γ + q(q̄) → c + c̄ + q(q̄).



G. Kramer, H. Spiesberger: Inclusive D∗ production in γγ collisions 497

c

cγ

g

c

cγ

g c

cγ

g c

cγ

g

a b c d

c

cγ

g c

cγ

g
c

cγ

g c

cγ

g

e f g h

Fig. 1a–h. Feynman diagrams for the virtual NLO corrections to γ + g → c + c̄

2.1 Leading-order cross section

We start with the process

γ(p1) + g(p2) → c(p3) + c̄(p4) + [g(k)] , (1)

where pi, i = 1, 2, 3, 4 and k denote the momenta of the
incoming photon, the incoming gluon, the outgoing c and
c̄ quarks, and a possible gluon in the final state (in square
brackets), which is present in the NLO corrections. We
have the following invariants

s = (p1 + p2)2, t = T − m2 = (p1 − p3)2 − m2,

u = U − m2 = (p2 − p3)2 − m2 (2)

and

s2 = S2 − m2 = (p1 + p2 − p3)2 − m2 = s + t + u . (3)

We define the dimensionless variables v and w as usual by

v = 1 +
t

s
, w = − u

s + t
, (4)

so that

t = −s(1 − v), u = −svw, s2 = sv(1 − w) . (5)

The leading-order cross section is

dσγg
LO

dvdw
=

c(s)
2

δ(1 − w)

×
(

t

u
+

u

t
+ 4

sm2

tu
− 4

(
sm2

tu

)2
)

, (6)

where

c(s) =
2πααse

2
c

s
. (7)

In (7), ec is the electric charge of the charm quark. If we
compare with the leading-order cross section dσLO/dvdw
for γ + γ → c + c̄ in [8], we have

dσγg
LO

dvdw
= κCF

dσLO

dvdw
, (8)

where κ = αs/(8αe2
c). From (6) the finite charm mass

corrections are clearly visible. Numerical results for the
direct contribution to γ + γ → c/c̄ → D∗ + X can be
found in our previous paper (Fig. 1 of [8]).

2.2 The next-to-leading-order cross section

The NLO corrections for γ+g → c+c̄ with non-zero charm
quark mass m have been calculated by several groups
[10, 12–14]. Only in the publication of Merebashvili et al.
explicit formulae for the separate contributions due to
one-loop diagrams and due to gluonic bremsstrahlung are
given in a form which allows us to derive the massless
limit m → 0, in order to establish the subtraction terms
which are needed for the cross section in the MS factoriza-
tion scheme. The results in [10] are subdivided into four
parts for the virtual corrections, dσγg

a−e, dσγg
f , dσγg

g , and
dσγg

h , and the bremsstrahlung cross section dσγg
Br . These

separate contributions have the following structure: dσγg
a−e

stands for the contribution of the graphs (a)–(e) in Fig. 1.
It is

dσγg
a−e

dvdw
= κCF

dσVSE

dvdw
− NC

2
dσa−e

dv
δ(1 − w) , (9)

where dσVSE/dvdw determines the Abelian part and is
given in (16) of [15] and

dσa−e

dv
=

C(s)
8

(
2Ã1

{
2
[
ζ2 − Li2

(
T

m2

)](
1 + 3

m2

t

)

− ln
(−t

m2

)(
1 +

m2

t

)
+ 2
}

+Ã2 ln
(−t

m2

)
+ Ã3

[
Li2

(−T

m2

)
− ζ2

]

+Ã4 + (t ↔ u)

)
, (10)
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Fig. 2a,b. Feynman diagrams for the bremsstrahlung contributions γ + g → c + c̄ + g a and for the process γ + q → c + c̄ + q b

with
C(s) =

αs

2π
c(s) . (11)

The coefficients Ãi (i = 1, 2, 3, 4) are functions of m2, s,
t and u. They are given in Appendix A of [10]. The result
of graph (f), i.e. the contribution of the box diagram to
the virtual corrections, can be written as

dσγg
f

dvdw
= κ

(
CF − NC

2

)
dσBox

dvdw
, (12)

where dσBox/dvdw is defined in (22) of [15]. Of course,
the term proportional to CF is the Abelian part and only
the term proportional to NC is relevant in this work.

The diagram (g) in Fig. 1 is one of the contributions
with the three-gluon coupling, which are not present in
the Abelian theory. Its contribution is written as

dσγg
g

dvdw
= −NC

2
dσg

dv
δ(1 − w) , (13)

where

dσg

dv
=

C(s)
8

(
2A1

[
Li2

(
T

m2

)
+ ln2

(−t

m2

)
− 2
]

+A′
1

[
4Li2

(
T

m2

)
+ 4 ln2

(−t

m2

)]

+A′
2 ln

(−t

m2

)
+ A′

3 + (t ↔ u)
)

. (14)

In (14), A1 is given in Appendix B of [15] and the coeffi-
cients A′

i, i = 1, 2, 3 are written in appendix A of [10].
The contribution of the non-Abelian diagram (h) in

Fig. 1 is
dσγg

h

dvdw
= −NC

2
dσh

dv
δ(1 − w) , (15)

where

dσh

dv
=

C(s)
8

(
A1

[
−35

4
ζ2 − Li2

(
T

m2

)

+ 4 ln
(−t

m2

)
ln
(−u

m2

)
− ln2

(−t

m2

)]

+B′
1Li2

(
T

m2

)
+ (B′

2 + A′
1) ζ2 + B′

3 ln2
(−t

m2

)

+B′
4 ln

(−t

m2

)
+ B′

5 ln
(−t

m2

)
ln
(−u

m2

)
+ B′

6

+ (t ↔ u)

)
. (16)

The coefficients B′
i, i = 1, 2, . . ., 6 are given in Appendix A

of [10]. In (10), (14) and (16), we left out the singular
pieces in dimensional regularization proportional to 1/ε2

(4 − D = 2ε), and 1/ε (dσBox/dvdw in (12) is under-
stood without the 1/ε-term). The infrared and collinearly
singular contributions cancel against the singular terms
from the gluon bremsstrahlung contributions, except one
remaining term which is canceled by a factorization coun-
terterm corresponding to the final gluon emitted collinear-
ly with the initial gluon (see Fig. 2a) which is written in
the MS factorization scheme. Further details are found in
[10], from which the (9) to (16) were taken.

The analytic results for the NLO corrections arising
from the gluonic bremsstrahlung have also been presented
in [10]. The corresponding diagrams are shown in Fig. 2a.
The squared sum of the amplitudes (plus those arising
from p1 ↔ p2) after summing over final spins and colors
and averaging over initial colors is written as (see [10])

4m2 |Mγg
2→3|2 = κB(ε)

(
CF

2
Gγγ − NC

2
Gγg

)
, (17)

where κB(ε) = (4π)3αα2
se

2
cµ

6ε and Gγγ is the expres-
sion in the square bracket of (24) of [15] (plus p1 ↔ p2).
Gγγ has been treated already in our previous work [8].
Gγg represents the new non-Abelian part with the fac-
tor −NC instead of CF . The non-Abelian bremsstrahlung
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contributions have been integrated also in D �= 4 dimen-
sions. The details are reported in [15] and [10]. Using
ȳ =

√
(t + u)2 − 4m2s and x = (1 − β)/(1 + β) where

β =
√

1 − 4m2/s, the final result for dσγg
Br/dvdw is given

in (4.5) of [10]. For later use we subdivide this cross section
into six parts

dσγg
Br

dvdw
=

6∑
i=1

(
dσγg

Br

dvdw

)(i)

, (18)

where

(
dσγg

Br

dvdw

)(1)

= −C(s)NC

64
vs2s

S2

×
{

e1 +
2S2

s2(s + u)
e2 ln

S2

m2 +
4S2

m2(s + t)2
e3

+
2S2

s2(s + t)
e4 ln

S2

m2 + e7I8 + e8I10 + e10I16

+e11I1(t ↔ u) + f1F1 + f2F2

}
; (19)

(
dσγg

Br

dvdw

)(2)

= −C(s)NC

64
1

(1 − w)+
s2
2

S2
(20)

×
{

2S2

s2ȳ
ẽ5 ln

T + U − ȳ

T + U + ȳ
+ ẽ6I11(t ↔ u) + ẽ9I11

}
;

(
dσγg

Br

dvdw

)(3)

= −C(s)NC

64
vss2

S2

×
{

f̃3F
c
3 + f̃4F

c
4 + f̃7F

c
7 + f̃8F

c
8 + f̃10F

c
10 + f̃11F

c
11

−
(

2 ln
s2

m2 + ln
m2

S2

)

×
(
f̃3F

s
3 + f̃4F

s
4 + f̃8F

s
8 + f̃10F

s
10 + f̃11F

s
11

)}
; (21)(

dσγg
Br

dvdw

)(4)

= −C(s)NC

64
1

(1 − w)+
s2
2

S2

{
f̃6F

c
6 + f̃9F

c
9

−
(

2 ln
sv

m2 + ln
m2

S2

)(
f̃5F

s
5 + f̃6F

s
6 + f̃9F

s
9

)}
; (22)

(
dσγg

Br

dvdw

)(5)

=
C(s)NC

32

(
ln(1 − w)

1 − w

)
+

× s2
2

S2

{
f̃5F

s
5 + f̃6F

s
6 + f̃9F

s
9

}
; (23)

(
dσγg

Br

dvdw

)(6)

=
αs

2π
NC

dσγg
LO

dvdw

×
{

2 ln2 sv

m2 − ln2 x +
1
2

ln2
(

tx

u

)
+ 2 ln

u

t
ln

sv

m2

+Li2
(
1 − u

xt

)
− Li2

(
1 − t

xu

)
− 2ζ2 (24)

−2m2 − s

sβ

[(
2 ln

sv

m2 − lnx
)

lnx − Li2

( −4β

(1 − β)2

)]}
.

The coefficients ei, fi, ẽi and f̃i used in (19)–(24) are given
in Appendix B of [10]. The integrals Ii and Fi are found in
Appendix C of [15] and Appendix C of [10], respectively1.

The six pieces in dσγg/dvdw differ in the singular be-
havior for w → 1. The second and the fourth term are pro-
portional to 1/(1 − w)+, whereas the fifth term contains
the factor (ln(1 − w)/(1 − w))+. The sixth term, being
proportional to dσγg

LO/dvdw, has the factor δ(1 − w). The
remaining terms are finite for w → 1 as long as m �= 0. In
the limit m → 0 they give rise to additional terms propor-
tional to δ(1 − w), 1/(1 − w)+ and (ln(1 − w)/(1 − w))+.

2.3 The subprocess γ + q → c + c̄ + q

The diagrams contributing to this process are shown in
Fig. 2b. The squared sum of the amplitudes after summing
and averaging over spins and colors is written as in [10]:

4m2 |Mγq
2→3|2 =

2
NC

(4π)3αα2
s

× (e2
cQ1 + e2

qQ2 − eceqQ3
)

, (25)

where eq is the charge of the light quark q. The squared
sum for the process γ + q̄ → c + c̄ + q̄ is given by the
same expression with an opposite sign in the last term
of (25). The result for the corresponding cross sections
dσγq

Qi
/dvdw (i = 1, 2, 3) have been worked out in [10] with

the following result:

dσγq
Q1

dvdw
= Le2

c

{
e1 +

4S2

m2(s + t)2
e3

+
2S2

s2(s + t)
e4 ln

S2

m2 + e8I10 + f̃4F
c
4 + f̃6F

c
6

+f̃8F
c
8 + f̃10F

c
10 + f̃11F

c
11

}
; (26)

dσγq
Q2

dvdw
= Le2

q

{
e1 + f12F12 + f13F13 + f14F14

+f̃16F
c
16 + f̃17F

c
17 + f̃20F

c
20

}
; (27)

dσγq
Q3

dvdw
= Leceq

{
e1 +

2S2

s2(s + t)
e4 ln

S2

m2 + e8I10 + f̃4F
c
4

+f̃6F
c
6 + f12F12 + f14F14 + f̃16F

c
16 + f18F18

+f̃19F
c
19 + f̃20F

c
20 + f̃21F

c
21

}
, (28)

with

L =
αα2

s

4NC

vs2

S2
. (29)

The coefficients ei, fi, and f̃i as well as expressions for
the integrals F c

i and Fi are all given in Appendix B and C
of [10]. The integral I10 can be obtained from Appendix C
of [15].

1 In the course of our work we found several misprints in [10]
which are not mentioned in detail here, but can be found in
[16]



500 G. Kramer, H. Spiesberger: Inclusive D∗ production in γγ collisions

The expressions (26) and (27) do not contain terms
with 1/ε poles since they are equal with opposite sign to
the corresponding counterterms. In connection with these
terms there appears an additional contribution originat-
ing from the factor

(
S2m

2/s2
2
)ε. This yields the following

contribution to the Q1 part of the cross section:(
dσγq

Q1

dvdw

)
eps

=
C(s)

4
ln

s2
2

S2m2

2sv

1 − vw

×Pgq(x2)B(x2s, t, x2u) , (30)

where B(s, t, u) corresponds to the LO matrix element for
γ + g → c + c̄ (see (6))

B(s, t, u) =
1
s

[
t

u
+

u

t
+ 4

sm2

tu

(
1 − sm2

tu

)]
. (31)

x2 = (1 − v)/(1 − vw) and Pgq(x) is the well-known split-
ting function,

Pgq(x) = CF

(
1 + (1 − x)2

x
− εx

)
. (32)

A similar term connected with the 1/ε pole is present in
the Q2 part of the subprocess γ+q → c+ c̄+q. This yields
the following additional contribution:(

dσγq
Q2

dvdw

)
eps

=
4C(s)s

9
e2
q

e2
c

ln
s2
2

S2m2

×Pqγ(w)Bqq̄(ws, wt, u) , (33)

where Bqq̄(s, t, u) is the LO matrix element for q + q̄ →
c + c̄,

Bqq̄(s, t, u) =
1
s

[
t2

s2 +
u2

s2 + 2
m2

s

]
. (34)

The splitting function Pqγ(x) is given by

Pqγ(x) =
NC

2
[
x2 + (1 − x)2 − 2εx(1 − x)

]
. (35)

According to [10] the expressions for the Q1 and Q2
parts of the cross section are not complete if one needs
them as derived in dimensional regularization. The results
in [10] were obtained in dimensional reduction where the
ε-dependent terms of the splitting functions in (30) and
(33) vanish. These terms induce extra finite terms in the
limit ε → 0. Therefore the transition from dimensional
reduction to dimensional regularization requires the addi-
tion of the following conversion terms to the Q1 and Q2
parts, respectively:(

dσγq
Q1

dvdw

)
conv

=−C(s)
4

2sv

1 − vw
P ε

gq(x2)B(x2s, t, x2u) (36)

and(
dσγq

Q2

dvdw

)
conv

=−16
9

C(s)s
4

e2
q

e2
c

P ε
qγ(w)Bqq̄(ws, wt, u) , (37)

where P ε
gq and P ε

qγ are the ε-dependent parts of the split-
ting functions (without the factor ε) given in (32) and
(35), respectively.

The contribution Q3, which arises from the interfer-
ence of the diagrams in (b1) and (b2) with (b3) and (b4)
in Fig. 2b, has no 1/ε pole. Therefore there is no countert-
erm proportional to eqec and no additional contribution
proportional to ln(s2

2/S2m
2) like (30) and (33).

This completes the collection of formulae for the NLO
corrections to γ + g → c + c̄ and the cross section for the
subprocess γ + q → c + c̄ + q, all based on the work of
Merebashvili et al. [10] where many details must still be
looked up. In order to obtain the subtraction terms for
the calculation of the cross section in the MS factoriza-
tion scheme, we need to know the limit m → 0 of the
expressions given above. Of course, for the LO contribu-
tion the result is easily obtained. For the NLO corrections,
however, and for the subprocess γ + q → c + c̄ + q, the
derivation of the limit m → 0 is quite lengthy. In the next
section we shall report the result of this computation and
some numerical tests which we performed to check that
the massless limits, from which the subtraction terms are
obtained, are correct.

3 Zero-mass limit
of the massive cross sections

In this section we present cross sections in the limit m → 0
for the NLO corrections to γ + g → c+ c̄ and for the cross
section γ+q → c+ c̄+q given in Sect. 2. The result for this
limit will in general be different from the cross section ob-
tained in the approach where the mass of the charm quark
is neglected from the beginning. In the genuine mass-
less calculation, worked out in [17] and confirmed later in
[11], the collinear singularities connected with the charm
quark appear as 1/ε poles in dimensional regularization.
In the massive theory, they appear as terms proportional
to ln(m2/s), instead. So, in this theory the collinear singu-
larities are regularized with a finite, although very small,
charm mass. Due to this different procedure for regular-
izing the collinear divergent contributions, also different
finite terms appear. The origin of different finite terms in
these two regularization schemes lies in the fact that the
two limits, m → 0 and ε → 0, are not interchangeable. The
different finite terms must be subtracted, if one wants to
perform the factorization of these singular terms in the
so-called MS scheme which is based on dimensional regu-
larization with massless quarks from the start. Such finite
terms have been found already in our previous work for
the case of NLO corrections for γ+γ → c+c̄. These results
for the subtraction terms are, up to a common constant
κCF (see (8)), identical to the Abelian contributions (pro-
portional to CF ) of the NLO corrections to γ + g → c+ c̄.
Therefore in this paper we need to establish the finite sub-
traction terms only for the non-Abelian part proportional
to NC and for the cross section of γ + q → c + c̄ + q.
We write the result again in a form which has been intro-
duced in the calculation for massless quarks by Gordon
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[11]. This will allow us to identify the subtraction terms
we are looking for.

The LO cross section for the process γ+g → c+ c̄ with
m = 0 has the simple form (see (6))

lim
m→0

dσγg
LO

dvdw
=

c(s)
2

δ(1 − w)τ0(v)

with

τ0(v) =
v

1 − v
+

1 − v

v
. (38)

The NLO cross section and the cross section for γ + q →
c+ c̄+q in the limit m → 0 is decomposed in the following
form:

lim
m→0

dσ

dvdw
=
(

c1 + c̃1 ln
m2

s

)
δ(1 − w)

+
(

c2 + c̃2 ln
m2

s

)(
1

1 − w

)
+

+ c3

(
ln(1 − w)

1 − w

)
+

+c5 ln v + c6 ln(1 − vw) + c7 ln(1 − v + vw)
+c8 ln(1 − v) + c9 lnw + c10 ln(1 − w) + c11

+c̃11 ln
m2

s
+ c12

ln(1 − v + vw)
1 − w

+ c13
lnw

1 − w

+c14

ln
(

1−v
1−vw

)
1 − w

. (39)

3.1 Massless limit for NLO corrections
to γ + g → c + c̄

Here we report the results for the various coefficients ci

which are written in the form

ci = ĉi + ∆ci , (40)

where ĉi are the results of [11] in the MS factorization with
massless quarks and the ∆ci are the subtraction terms we
need to know.

To shorten the expressions, we make use of the abbre-
viations

X = 1 − vw , Y = 1 − v + vw , vi = i − v . (41)

We shall give the result only for the non-Abelian contribu-
tions proportional to NC . The Abelian terms proportional
to CF are equal, up to a common factor, to the coeffi-
cients derived in our earlier work [8] and can be taken
from this reference. Terms proportional to β0 = 11 − 2

3nf

due to coupling constant renormalization are not shown
explicitly, although they are, of course, included in our
numerical evaluations. For the ci we found the following
results:

c1 = −C(s)
NC

2

{
4 ln v ln v1τ0(v) + ln v + ln v1 (42)

+
(

17
2

− 7
2v1

− 4
v

)
ln2 v +

1
2

(
1
v

+ 1
)

ln2 v1

}
+ ∆c1 ,

where

∆c1 = −C(s)
NC

4
ln v

vv1
; (43)

c̃1 = C(s)NC {ln v1 − ln v} τ0(v) + ∆c̃1 , (44)

where

∆c̃1 = C(s)
NC

4
1

vv1
; (45)

c2 = −C(s)NC {ln v1 − 3 ln v} τ0(v) + ∆c2 , (46)

where

∆c2 = −C(s)
NC

4
1

vv1
; (47)

c̃2 = −C(s)NCτ0(v) ; (48)
c3 = 2C(s)NCτ0(v) ; (49)

c5 = C(s)
NC

2

{
−2vv1

X3 +
2vv2

X2 − 6
v1X

+
4v2 + 6v1

X

+
1
w

[
4
v2
1

+
6
v

− 2
v1

− 3 + 4v

]

+w

[
8
v2
1

− 12
v1

+ 6
]

− 8
v2
1

+
8
v1

− 2
}

; (50)

c6 = C(s)
NC

2

{
− 1

w

[
4
v2
1

+
1
v

− 1
v1

+ 2
]

(51)

− w

[
8
v2
1

− 16
v1

+ 8
]

+
8
v2
1

− 9
v1

+ 1
}

;

c7 = C(s)
NC

2

{
1

vw
+

v

v1

}
; (52)

c8 =−c6 − C(s)
NC

2

{
3

wv1
− 3

v1
− 3

w
+

2
vw

+ 3
}

; (53)

c9 = −C(s)
NC

2

{
2

v1X
+

2v − 2 − 2v2

X

− 1
w

[
4
v2
1

+
2
v

− 4
v1

+ 2v + 1
]

−w

[
8
v2
1

− 16
v1

+ 8
]

+
8
v2
1

− 11
v1

+ 3
}

; (54)

c10 = c5 + C(s)
NC

2

{
2

v1X
+

2v − 2v2 − 2
X

+
1
w

[
1
v1

− 2
v

− 2v + 1
]

+
v

v1

}
; (55)

c11 = C(s)
NC

2

{
−2v

Y
+

6vv1

X3 +
v(2v − 7)

X2

+
1

v1X
+

v − v1

X
− w

(
4
v2
1

− 2
v1

+ 4
)

+
4
v2
1

− 4
v1

+ 4
}

+ ∆c11 , (56)

where

∆c11 = C(s)
NC

2

{
2vv1

X3 +
vv1

X2 +
1

2v1X
+

3v − 2v2 − 1
2X

− 1
2w

(
1
v

+ 2v − 3
)}

. (57)
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We remark that c11 − ∆c11 agrees (up to the factor C(s),
which is common to all ci) with ĉ11 in [11] for λ = 1, i.e.
for D-dimensional spin averaging.

c̃11 = −c5 + C(s)
NC

2

{
− 2

v1X
+

2 + 2v2 − 2v

X

+
1
w

[
2
v1

+
4
v

− 4 + 2v

]
− 4

v1
+ 4
}

; (58)

c12 = C(s)
NC

2

{
1
v1

+
1
v

+ 2
}

; (59)

c13 = C(s)
NC

2

{
1
v1

+
2
v

− 5
}

; (60)

c14 = C(s)
NC

2

{
1
v

+
2
v1

− 5
}

. (61)

We found subtraction terms in c1, c̃1, c2 and c11. ∆c̃1
is remarkable since it means that there is a term propor-
tional to ln(m2/s) which is not connected with a collinear
divergent term as obtained with massless quarks in MS
factorization. No such term was found in our previous
work. The origin of ∆c̃1 remains unclear to us. In any
case, its presence is not relevant for our purpose since it
will be subtracted to obtain the massive theory with MS
factorization. In order to check the subtraction terms ∆c1,
∆c̃1, ∆c2 and ∆c11, we made numerical tests which will
be described in Sect. 3.3.

3.2 Massless limit for the cross section
of γ + q → c + c̄ + q

We shall present the cross section limits for the contribu-
tions Q1, Q2 and Q3 separately. For all three terms there
is no LO cross section of the order O(ααs). Therefore we
have c1 = c̃1 = c2 = c̃2 = c3 = c12 = c13 = c14 = 0 for Q1,
Q2 and Q3.

The other coefficients for dσγg
Q1

/dvdw, which is decom-
posed as in (39), are

c5 = C(s)CF

{
v

2X2 − vv3

2Xv1

− (1 + 3v2)(1 − w)
v2
1

+
1 + v2

v2
1w

}
; (62)

c6 = C(s)CF

{
2v(1 + v)

v2
1

− 1 + v2

v2
1w

− 4v2w

v2
1

}
; (63)

c7 = 0 ; (64)
c8 = −c6 ; (65)
c9 = −c6 ; (66)

c10 = c5 ; (67)
c̃11 = −c5 ; (68)

c11 = C(s)CF

{
− v

2X2 +
v

2v1X
+

1
2w

− 2w

v2
1

+
2v2

v2
1

+
2
v1

+
w

v1
− 2w

}
. (69)

We found no additional terms compared to [11]. Therefore
in the Q1 part all coefficients obtained with mass regular-
ization agree in the limit m → 0 with the massless calcu-
lation in MS factorization. We remark that the result (69)
for c11 corresponds to D-dependent spin averaging of the
photon and gluon (λ = 1 in Appendix B8 of [11]). In or-
der to obtain the results (62)–(69), i.e. without additional
terms ∆ci, it was essential to incorporate the conversion
term (36).

The coefficients for dσγg
Q2

/dvdw are the following:

c5 = Cq(s)CF

{
(3 − 2v)v

2Y
− vv1

2Y 2 − (3v2 + v2
1
)
(1 − w)

+
1 − 2vv1

w

}
; (70)

c6 = 0 ; (71)

c7 = −Cq(s)CF
v2w

Y 2 (1 − 2v + 2vw) ; (72)

c8 = 0 ; (73)

c9 = Cq(s)CF

{
1 − 2vv1

w
+ 2v − 4v2(1 − w)

}
; (74)

c10 = c5 ; (75)
c̃11 = −c5 ; (76)

c11 = Cq(s)CF

{
(3v − 4)v

2Y
+

vv1

Y 2 +
1
w

(
1 + v − v2)

+w
(
3v − 1 − 4v2)+ 4v2 − 2v

}
+ ∆c11 , (77)

where

∆c11 = −Cq(s)CF
1
w

(
w2 + (1 − w)2

)
. (78)

Here we have introduced the factor

Cq(s) =
2πααse

2
q

s

αs

2π
=

e2
q

e2
c

C(s) . (79)

In the contribution Q2 we found one extra term in c11,
which must be subtracted when going over to the MS fac-
torization scheme. The result for c̃11 agrees with the result
in [11], if one compares to c̃11 + ˜̃c11, where c̃11 (˜̃c11) gives
the terms originating from the collinear singularities of the
initial state (final state). Since in the massive theory both
have the scale m, we have no possibility, based on the ex-
plicit results of [10], to distinguish initial and final state.
We have calculated ∆c11 using the result in [11] for λ = 1,
i.e. with D-dimensional spin averaging for the photon.

The massless limit for the Q3 term is obtained in the
same way. The corresponding coefficients have the prefac-
tor

Ccq(s) =
2πααseqec

s

αs

2π
=

eq

ec
C(s) (80)

and the following form:

c5 = 0 ; (81)

c6 = Ccq(s)CF
v2(1 − 2w)

v1
; (82)
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c7 = Ccq(s)CF
v2(1 − 2w)

v1
; (83)

c8 = Ccq(s)CF 2v(1 − 2w) ; (84)

c9 = Ccq(s)CF

{
3v2

v1
+ 2 − 6v2w

v1
+

8v2w2

v1

}
; (85)

c10 = −Ccq(s)CF

{
2 +

5v2

v1
− 10v2w

v1
+

8v2w2

v1

}
; (86)

c11 = Ccq(s)CF

{ v

Y
− v

X
− 4w + 2

}
. (87)

As expected, there are no contributions to c̃11 since Q3
does not have any collinear singularities. Since there are
no ∆ci terms, all coefficients agree with the results in [11].
In total, we have found only one ∆ci, namely ∆c11 in
the Q2 contribution. This completes the calculation of the
subtraction terms needed for the MS factorization scheme
with massive charm quarks.

3.3 Numerical test of the subtraction terms

The calculation of the subtraction terms, in particular
those in Sect. 3.1, was rather involved. Special care had
to be exercised in order to recover all the terms propor-
tional to δ(1 − w), 1/(1 − w)+, (ln(1 − w)/(1 − w))+ and
the remaining terms in the decomposition (39). In order to
check that the ∆ci presented in Sect. 3.1 are correct, and
also to see how the various contributions to dσγg/dvdw
written down in Sect. 2.2 behave as a function of the trans-
verse momentum pT of the charm quark in comparison
with the cross section for massless quarks, we have cal-
culated the NLO corrections in two ways. First, we have
taken the six terms from the bremsstrahlung contribution
as given in (19)–(24) and the contributions of the vir-
tual corrections dσγg

a−e, dσγg
f , dσγg

g and dσγg
h in (9)–(16)

and calculated these parts as a function of pT for charm
quarks with mass m = 1.5 GeV, and also from formulae
derived directly from the expressions in Sect. 2.2 in the
limit m → 0. We normalize these parts to the LO cross
section for massless charm quarks calculated from the for-
mula (6) in Sect. 2.1 and denote them by Ti(NC):

Ti(NC) =
d2σγg

i /dydpT

d2σγg
LO/dydpT(m = 0)

. (88)

The cross sections in the numerator and denominator of Ti

are actually the cross section for e++e− → e++e−+c+X,
i.e. the photon–photon cross section folded with both the
Weizsäcker–Williams spectrum (with θmax = 0.033) and
the distribution of gluons inside the photon (taken from
[18]). For the present purpose it is sufficient to evaluate
the cross sections at rapidity y = 0. All other input data
are chosen as in our previous work [8]:

√
s = 193 GeV,

Λ(nf =4) = 328 MeV (i.e., αs(mZ) = 0.1181). The charm
quarks are not fragmented and BR(c → D∗) = 1. The
renormalization scale is µR =

√
p2
T + m2 and the factor-

ization scales are equal to MI = MF = m, as inherent
to the formalism in Sect. 2.2. Details for how dσ/dydpT is

calculated from dσ/dvdw have been given for γγ scatter-
ing in (45) in [8]. In this equation, the distribution function
of the second photon is replaced by the convolution of the
Weizsäcker–Williams spectrum with the distribution of a
gluon in the photon.

The results for the ratios Ti(NC) (i = 1, . . . 6),
Ta−e(NC), Tf(NC), Tg(NC) and Th(NC), are shown in
Figs. 3 and 4. The dashed lines give the contribution from
the massive theory (m �= 0) and the full lines are the
massless limit of the massive calculation. We see that the
dashed curves approach the full curves for increasing pT
quite nicely. This means that the extraction of additional
terms proportional to δ(1−w) in the Ti(NC) which appear
in the massless limit, has been done correctly. We observe
that above pT = 5 GeV the two curves, dashed and full,
are already very close to each other. Larger deviations are
seen only for pT < 5 GeV which originate from the terms
∝ m2/p2

T we are interested in. In Fig. 5a we have plot-
ted the sum of all the Ti(NC). We see that the results of
the massive theory (dashed curve) approaches the mass-
less limit (full curve) quite well. For pT > 10 GeV the
difference between the two curves is negligibly small. The
dotted curve gives the result where the ∆ci terms given in
Sect. 3.1 are subtracted from the massless limit. This cross
section is the same as the one from the massless theory
with MS factorization as given in [11]. We see that the
difference to the full curve is non-negligible and increases
with increasing pT. This difference will be added later to
the massive theory in order to adjust the massive theory
to the MS factorization. The difference between the mass-
less limit and the massive cross section is more evident in
Fig. 5b, where we have plotted the difference of the sum
of all Ti terms for the massless limit (the massless theory
without ∆ci) and the massive calculation.

The sum
∑

Ti(NC) in the massless limit has been cal-
culated independently by going back to the decomposition
(39) with the ci given in (42)–(61), i.e. with the subtrac-
tion terms ∆ci included as compared to Gordon’s result.
For this calculation we obtained the same full curves in
Fig. 5a,b. This demonstrates that the extraction of the
terms ∆c1, ∆c̃1, ∆c2 and ∆c11 as given in Sect. 3.1 is cor-
rect.

For comparison we have performed the same calcula-
tion for the Abelian part of the cross section. Here we
have calculated

∑
Ti(CF ) directly from the massless limit

in terms of the coefficients ci, written in [8] for the process
γ +γ → c+ c̄. The results, together with the cross section
for the massless theory of [11] (∆ci subtracted), are shown
in Fig. 6a,b. We see that the massive result approaches the
massless limit for large pT. The difference between the two
curves (see Fig. 6b) above pT = 5 GeV is insignificant. We
observe that the effect of the ∆ci terms found in [8] on
the CF contribution is very important.

The calculation of the subtraction term for γ + q →
c + c̄ + q was much easier. So we show numerical results
only for the massless limit obtained from the results in
Sect. 3.2. The comparison with the massive cross section
for the cases Q1, Q2 and Q3 is shown in Figs. 7a–c, again
normalized to the LO cross section for γ + g → c + c̄
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Fig. 3a–f. Comparison of the massive and massless calculations for the bremsstrahlung contributions T1–T6 a–f; see text
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Fig. 4a–d. Comparison of the massive and massless calculations for the virtual contributions Ta−e–Th a–d; see text

with m = 0 as in (88). We see that the massless limit
approaches the massive cross section quite nicely. We see
also that the effect of the only ∆ci term, namely ∆c11 in
case of Q2 (dotted curve in Fig. 7b; note the scale), has an
insignificant effect.

4 Comparison with LEPII data

In this section we compare our results with the experimen-
tal data from the ALEPH [1], the L3 [2] and the OPAL
[3] collaborations. We do this for every experiment sepa-
rately, since the three collaborations analyzed their mea-
surements with different average center-of-mass energies√

s, different anti-tagging conditions (limit on Q2), and
within slightly different rapidity ranges. For the rapidity
distributions dσ/dy, the average over the pT-range is also
not identical for the three data sets. The values used for

Table 1. Experimental conditions for the measurement of in-
clusive D∗ production

OPAL L3 ALEPH
√

s [GeV] 193 197 197
tagging θ < 0.033 Q < mρ Q2 < 4.5GeV2

|y|max 1.5 1.4 1.5
pT-range [GeV] 2–12 1–12 2–12

the average
√

s, for Q2
max, for |ymax| and the pT-range used

for the comparison are given in Table 1.
When comparing predictions for the pT-distribution

with the experimental results, we show both the differen-
tial cross section dσ/dpT as a function of pT, as well as
values averaged over pT-bins as used by the experimental
collaborations. These bins are 2–3, 3–5 and 5–12 GeV for
all three experiments and the additional bin 1–2 GeV for
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Fig. 5a,b. Comparison of the massive calculation (dashed lines) with its massless limit (full lines) for the terms proportional
to NC for the process γ + g → c + c̄ + X. In a, the sum of all ratios defined in (88) is shown, in b the difference of the sums for
the massless limit and the calculation with m �= 0. The dotted lines represent the results of the massless limit with subtracted
∆ci, i.e. the calculation with MS factorization [11]
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Fig. 6a,b. Comparison of massless (full lines) and massive (dashed lines) calculations for the sum of all contributions propor-
tional to CF for the process γ + g → c + c̄ + X as in Fig. 5

L3. Since the y-distributions are very flat, there is no need
to average over bins and we will show only dσ/dy.

The theoretical predictions of the massive theory con-
sist of three parts, the direct cross section with m �= 0
already presented in our previous work [8], the single-
resolved contribution considered in this paper, and the
double-resolved cross section. The single-resolved cross
section has two components. First there are the contri-
butions from γg → cc̄ together with the corresponding
NLO corrections and the cross section for the processes

γq → qcc̄, both with m �= 0 and after subtracting the
terms ∆ci as given in Sect. 3 and in our earlier work for
the Abelian part [8]. Second, we add the contributions
coming from the charm PDF in the photon. This part is
evaluated with m = 0 in the hard scattering cross sec-
tion including NLO corrections, using the formulae given
in [11].

The particular prescription for the treatment of the
incoming heavy charm quark in the single-resolved con-
tribution as a massless parton is in fact mandatory. Since
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Fig. 7a–c. Comparison of the massless (full lines) and massive calcula-
tions (dashed lines) for the contributions to the process γ+u → u+c+c̄
normalized as in (88). In b the dotted line shows the Q2 part with sub-
tracted ∆c11

all available charm PDFs are determined with m = 0 in
the hard scattering cross section, this is the only consis-
tent choice. The finite charm quark mass appears only in
the starting scale µ0 = m with the effect that the charm
PDF vanishes below the scale µ0 [18]. This prescription is
usually also applied in the treatment of heavy quarks in
deeply inelastic scattering, as advocated in [6, 7, 19].

We will also compare with predictions of the massless
theory. In this case, all contributions are calculated with
m = 0, again using the results of [11]. In both the massless
and the massive calculations, we add the double-resolved
contributions evaluated with m = 0. The corresponding
formulae are based on the work of [20].

In the following the fragmentation c → D∗ is calcu-
lated with the purely non-perturbative FF of Binnewies
et al. [4] (OPAL set at NLO) determined from OPAL
e+e− → D∗X data as explained in detail in [4]. We choose
the renormalization scale and αs(mZ) as stated above, in-
clude nf = 4 flavors and choose the factorization scales

MI = MF = 2
√

p2
T + m2. The transition from MI =

MF = m to this choice of scales is performed, as de-
scribed in our previous work (see (42) in [8]), using the
coefficients c̃1, c̃2 and c̃11, i.e. based on the massless cal-
culation. The coefficients of the massless calculation must
be used here, since the evolution of PDFs and FFs is also
based on massless evolution kernels. This choice of scales
allows us to calculate dσ/dpT down to small pT, since
otherwise we would come below the starting scale of the
non-perturbative FF of [4], which is approximately equal
to 2m. We have calculated d2σ/dydpT, integrated over the
y- or pT-ranges as given in Table 1, for the three data sets.
y is the pseudo-rapidity as used in the analysis of the ex-
perimental data [1–3]. We identify in our calculations the
pseudo-rapidity of the D∗ with the rapidity of the charm
quark. Finally, we note that we neglect the small contri-
bution from the fragmentation of gluons, g → D∗.

In order to show the amount originating from the
charm content in the photon, we have plotted dσ/dpT as a
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Fig. 8a–c. The single-resolved contribution: a shows the charm-
initiated contribution (dotted line), the contribution due to gluons and
light quarks (dashed line) and the sum (full line); b compares the sum
of all contributions for the massless (full line) and the massive (dashed
line) calculation; c shows the ratio of the massive over massless calcu-
lation with (full) and without (dashed line) charm in the photon

function of pT for the massive single-resolved contribution,
i.e. without the charm contribution in the photon, and the
sum of both contributions in Fig. 8a. We see that for small
pT the component due to light quarks and gluons in the
initial state is dominant. For large pT the contribution of
the charm PDF increases, as to be expected, and amounts
to 68% of the sum at pT = 12 GeV. It is clear that due
to this component the influence of the charm quark mass,
i.e. the correction from the m2/p2

T terms, diminishes. This
is shown in Fig. 8b, where the total single-resolved cross
section is plotted for the massive and the massless cal-
culation. On this logarithmic plot, the influence of the
finite charm mass is visible only for small pT < 2 GeV.
At pT = 2 GeV, the m �= 0 cross section is reduced by

∼ 16% as compared to the massless approximation, as is
seen more clearly in Fig. 8c where the ratio is shown. The
dashed curve in this plot shows the ratio before the charm
in the photon contribution is added. The strong increase
of this ratio for pT < 2 GeV is caused by the large NLO
corrections in the massless cross section. For definiteness,
the cross sections in Fig. 8 have been calculated with the
ALEPH kinematical constraints (see Table 1).

The influence of the m2/p2
T terms is further dimin-

ished in the small pT region, if we add the double-resolved
cross section. This part is almost entirely due to the charm
component in the photon, which we have calculated with
m = 0 in the hard scattering parton–parton cross sections
in the LO and NLO terms in the same way as we have
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Fig. 9. The double-resolved contribution. The contribution
due to light quarks and gluons in the initial state is shown by
the dash-dotted line. This part is negative at small pT (pT <
7 GeV) where the absolute value is shown

done for the corresponding single-resolved cross section.
To demonstrate this, we show in Fig. 9 the double-resolved
cross section dσ/dpT due to light quarks and gluons in
the initial state, i.e. without the charm component, to-
gether with the sum of all contributions. We see that the
cross section without charm in the initial state is indeed
very small in its absolute value and the double-resolved
cross section is dominated by the charm component. The
light-quark plus gluon component becomes negative for
pT < 7 GeV due to NLO corrections. This negative con-
tribution leads to an insignificant decrease of the total
double-resolved cross section for pT > 2 GeV. At LO, the
cross section without charm in the photon is essentially
given by the gg → cc̄ component, which is small, since
the gluon component in the photon PDF is not large. An-
other contribution at LO is from qq → cc̄, which also is
expected to be small. These non-charm contributions are
computed in the approximation with m = 0. The fact that
their contribution is negligible is also true for m �= 0 [5, 9].

To obtain an overview of the partition of dσ/dpT into
direct and resolved contributions and the influence of the
massless approximation, we show in Fig. 10a these cross
sections with cuts as in the ALEPH analysis. All three
cross sections are calculated up to NLO. At pT = 2 GeV,
the three contributions, direct, single-resolved and double-
resolved, amount to approximately 39%, 16% and 45%
of the total sum, whereas at pT = 12 GeV the relative
contributions are 68%, 16% and 16%, respectively. These
numbers refer to the cross section with m �= 0 except for
the contributions with charm in the photon PDF. With
increasing pT, the resolved cross sections decrease much
stronger than the direct component. In Fig. 10a we also
show the direct and single-resolved cross sections for m �=

0 and for m = 0 for comparison. We see that the finite
charm mass effects, i.e. the m2/p2

T terms, are essential
only for small pT ≤ 2 GeV and are largest for the direct
component. They lead to a reduction of the direct cross
section. With this reduction the double-resolved cross sec-
tion becomes dominant and therefore the influence of the
finite charm mass effects is very much reduced in the total
sum. For a clearer presentation of the three components
in the cross section with m �= 0, we show them in Fig. 10b
again, where the dominance of the double-resolved part
for small pT is clearly visible.

After these preparatory studies we are in the position
to compare our results with the data of the three LEP col-
laborations. This is shown in Figs. 11a,b,c where we com-
pare our results of the calculation with massive (m �= 0)
and massless (m = 0) charm quarks with the experimental
data of the ALEPH [1], L3 [2] and OPAL [3]2 collabora-
tions. The data are always averages over the respective
bins in pT: 1–2 (L3), 2–3, 3–5, 5–12 GeV (ALEPH, L3
and OPAL), but we show theoretical predictions for both
the differential cross section dσ/dpT as well as for corre-
sponding bin averages. The agreement between data and
theory is quite satisfactory on average. The L3 point in
the first bin is lower than the theoretical prediction, the
results in the bin 2–3 GeV are in good agreement for all
experiments, while our results for the last two bins tend to
be lower than the measured values. Only the L3 point in
the highest pT-bin is again in perfect agreement with the
predictions. In Fig. 11a,b,c we have plotted also the pure
m = 0 cross sections. The results are not very different
from the massive cross sections, even at low pT. This is
due to the large contribution of the double-resolved cross
section at small pT, which is there of the same order as
the direct contribution. In general, the massive theory is
below the pure massless theory. But the reduction is not
very large and converges to zero with increasing pT by
construction. In Fig. 11d we have collected all three data
sets in one plot and compare them with the respective
theoretical predictions. We see that the theoretical cross
sections with ALEPH and OPAL constraints almost coin-
cide. Only the L3 prediction is lower due to the different
rapidity cut and the different anti-tagging condition. We
remark again that we have in general good agreement for
pT ≥ 2 GeV. Below this pT value, the theoretical predic-
tion lies higher by an appreciable amount as compared to
the L3 data point.

Since the double-resolved cross section is dominated
by the contribution due to the charm content in the pho-
ton, which is evaluated with m = 0 for consistency as ex-
plained earlier, this part is divergent in the limit pT → 0.
This explains the strong increase towards small pT. This
strong increase in the small pT region could be eliminated
by switching to the fixed flavor theory with nf = 3 below
some pT value. This would eliminate the resolved contri-
bution completely and the whole cross section would be
given by the contributions with charm quarks only in the
final state and not in the initial state. In the three-flavor
theory, non-perturbative effects from the charm distribu-

2 We take the OPAL data from the second reference in [3]
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Fig. 10a,b. The partition of the full calculation (full lines) into direct (dotted), single-resolved (dashed) and double-resolved
(dash-dotted) contributions. In a, upper curves correspond to the massless and lower curves to the massive calculation. The
results of the massive calculation are shown separately in b again for clarity
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Fig. 11a–d. The full calculation compared with experimental data from ALEPH a, L3 b and OPAL c. Full lines represent
the massless, dashed lines the massive calculation. Histograms show dσ/dpT averaged over the corresponding pT-bins. The
histograms in d are for the massive calculation (full line: ALEPH, dashed line: OPAL, dotted line: L3)
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Fig. 12a,b. Effect of varied factorization scales: MI = MF =
√

p2
T + m2 is chosen in this figure. a should be compared to

Fig. 10b, b to Fig. 11a

tion in the photon, and possibly from the fragmentation
c → D∗, would not be present. A similar procedure has
also been proposed in many papers on charm production
in DIS (see for example [6]). The problem, however, lies
in the fact that the precise position of the matching point
is unknown and, secondly, that there is not a unique pre-
scription for how to achieve a continuous matching. The
matching point will certainly lie somewhere at small pT,
say at pT ≤ 2 GeV. On the other hand, the smallest pos-
sible value of pT, where the matching must occur, is, of
course, the point where the photon PDF or the charm FF
vanishes. With the factorization scale considered so far,
this is pT = 0. It is obvious therefore that these naive
considerations do not provide a criterion which can be
used to fix the matching scale. We might come back to
this question in a future study.

The partition of the cross section into the three sep-
arate parts depends on the choice of the factorization
scales. For example, for MI = MF =

√
p2
T + m2 the di-

rect contribution is larger by approximately 10% for all
pT values, and the single-resolved contribution becomes
steeper (with an increase of 38% at pT = 2 GeV and
10% at 12 GeV). In contrast, the double-resolved contri-
bution is reduced (by 60% at pT = 2 GeV and 34% at
pT = 12 GeV). Of course, the change of these separate
parts is unphysical; only the change of the sum is relevant.
The cross section dσ/dpT for the separate pieces and their
sum with the new scale choice is shown in Fig. 12a (for the
ALEPH experimental setup) which can directly be com-
pared with Fig. 10b, where the results were given with the
scale 2

√
p2
T + m2. This specific variation of the factoriza-

tion scales amounts to a 22% decrease at pT = 2 GeV and
a 1% increase at pT = 12 GeV of the physical cross sec-
tion. As a consequence, the agreement of theory and data

in the first bin improves with the new scale, but worsens
slightly in the second bin (see Fig. 12b). One should keep
in mind that continuous variations of the renormalization
and factorization scales would lead to an error band of
theoretical predictions which, however, we do not show.

The LEP collaborations have measured also the cross
section dσ/dy as a function of y, where d2σ/dydpT is
integrated over the pT regions 2–12 GeV (ALEPH and
OPAL) and 1–12 GeV (L3). We have calculated these ra-
pidity distributions and compare them with the respective
data points from ALEPH, L3 and OPAL in Figs. 13a,b,c.
The ALEPH and OPAL points agree with the theoreti-
cal prediction inside the experimental errors (the OPAL
points are slightly above the m �= 0 prediction). The L3
points, however, lie below the theoretical curves. Since
the cross section after integration over pT is dominated
by the contribution from the lowest pT-bin, this is con-
sistent with the comparison of the pT-distribution shown
earlier at the smallest pT-bin. In the three figures we also
show how the total y-distribution is separated into the
direct, single-resolved and double-resolved parts for both
the m �= 0 and the m = 0 theory. In Fig. 13b one can see
clearly that the cross section with m = 0 (the upper full
line) is not a reliable approximation if integrated down to
pTmin = 1 GeV. The cross sections shown in Figs. 13a,b,c
are again calculated with the scale 2

√
p2
T + m2.

5 Summary and conclusions

In this work we have compared two approaches for the cal-
culation of inclusive charm production. One is based on
a calculation with massless quarks and MS factorization,
the second on a calculation with massive charm quarks. By
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Fig. 13a–c. Theoretical predictions and experimental results for the y-
distribution (a ALEPH, b L3, c OPAL). We show separately the direct
(dotted), single-resolved (dashed) and double-resolved (dash-dotted)
contributions and their sums (full lines). Upper curves are for the mass-
less, lower curves for the massive calculation

considering the massless limit of the massive calculation,
we were able to derive subtraction terms which allowed
us to combine the massive calculation in a consistent way
with parton distribution and fragmentation functions de-
fined in the MS factorization scheme.

The cross section for the direct component of the γγ
reaction in NLO was studied already in a previous work.
Here we extend the study to the single-resolved contribu-
tions in NLO. The NLO corrections to γg → cc̄ consist of
an Abelian part and a non-Abelian part. The first part is
identical, up to a normalization factor, to the NLO cor-
rections for the direct contribution. For the second, the
non-Abelian part, we found also that the massless limit
of the massive cross section differs from the massless the-
ory with MS factorization by finite terms which are non-

singular for m → 0. These finite terms must be subtracted
from the massive hard cross section, since the latter has
to be folded with a fragmentation function for the transi-
tion c → D∗ and with parton distribution functions of the
photon which are available only in the MS factorization
scheme based on calculations with massless quarks.

It turns out that this massive theory with MS factor-
ization leads to cross sections which converge rapidly to
their massless limits with increasing pT. Only at rather
small pT, terms proportional to m2/p2

T are important.
These terms are more important for the direct cross sec-
tion than for the single-resolved one, since the latter re-
ceives contributions also from the charm distribution in
the photon which must be evaluated with zero charm
mass.
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The double-resolved contribution has also two parts.
One originates from light quarks and gluons in the ini-
tial state, the other is due to an initial charm quark in
one of the two scattering photons. This latter contribution
overwhelms the double-resolved cross section by far and is
computed with massless quarks. Since the part with charm
quarks in the final state, on the other hand, is negligible
except possibly for very small pT, the total double-resolved
cross section can safely be evaluated with massless charm
quarks.

For reliable predictions one needs a good description
of the fragmentation process. In our numerical evaluation
of the inclusive D∗ production we have taken the fragmen-
tation functions from fits to D∗ production in e+e− anni-
hilation at LEP1. To compare with recent measurements
of the pT- and y-distributions in γγ collisions at LEP2,
we added the direct, single-resolved and double-resolved
contributions. The agreement of our predictions with the
data is quite good (see Fig. 11) down to pT � 2 GeV. Fi-
nite charm mass effects are essential only for values of pT
below 3 GeV. To improve the theory at very small pT it
seems necessary to switch from the four-flavor theory to
the three-flavor theory at some matching point.
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19. M. Krämer, F.I. Olness, D.E. Soper, Phys. Rev. D 62,
096007 (2000)

20. F. Aversa, P. Chiappetta, M. Greco, J.P. Guillet, Nucl.
Phys. B 327, 105 (1989); B.A. Kniehl, G. Kramer, M.
Spira, Z. Phys. C 76, 689 (1997); J. Binnewies, B.A.
Kniehl, G. Kramer, Z. Phys. C 76, 677 (1997)


